Integrated Circuit Economics

2011 Edition

Written by Scotten W. Jones
Welcome and License
1.1 License
1.2 About IC Knowledge LLC
1.3 IC Knowledge LLC products
1.4 Disclaimer
1.5 Report outline
1.6 What this report is not
1.7 A word about technology focus
1.8 Acknowledgements

IC Market Status and Trends
2.1 Worldwide semiconductor revenue trend
2.2 Detailed 2011 IC forecast
2.3 The status of the recovery
2.4 Semiconductor revenue by region
2.5 Semiconductor revenue by end use
2.6 Semiconductor revenue by product
2.7 Top 10 semiconductor companies
2.8 Further reading
2.9 References

Capital and Materials Spending
3.1 Capital spending analysis
3.2 Semiconductor materials market
3.3 References

Economics Trends
4.1 Introduction
4.2 Product pricing trends
4.3 Product cost trend
4.4 Fabrication facility cost trends
4.5 Effect of utilization on profitability
4.6 Profit and loss trends
4.7 Leasing trends
4.8 R&D spending
4.9 Fabs - build or buy and where to build
4.10 Memory trends
4.11 References

300mm and 450mm
5.1 Introduction
5.2 300mm status
5.3 300mm fab costs
5.4 300mm ramp versus 200mm ramp
5.5 Revenue required to support a 300mm fab
5.6 300mm cost savings
5.7 300mm strategies and impact for leading semiconductor companies 45
5.8 300mm analog fabs 47
5.9 450mm 47
5.10 Further information 50
5.11 References 51

6 Foundries 52
6.1 Introduction 52
6.2 The genesis of the pure play foundry 52
6.3 The growth years 53
6.4 The foundry model 54
6.5 Utilization effects on the foundry model 55
6.6 Foundry yields 58
6.7 Technology transitions 59
6.8 Average Selling Prices 59
6.9 Shake-up in the foundry landscape 59
6.10 What do these trends mean for the future of foundries? 61
6.11 References 61

7 Design 62
7.1 Introduction 62
7.2 Design productivity 62
7.3 Factors influencing design productivity 64
7.4 Design costs 64
7.5 Mask costs 67
7.6 Design issues at 90nm and 65nm 67
7.7 Design issues at 32nm and 28nm 69
7.8 Conclusion 70
7.9 References 70

8 Integrated Circuit Manufacturing Overview 71
8.1 Silicon wafer manufacturing 71
8.2 Wafer fabrication 73
8.3 Cleanroom technology 83
8.4 Electrical tests 87
8.5 Packaging 90
8.6 References 93

9 Wafer Fabrication Costs 94
9.1 Accounting categories and cost map 94
9.2 Material costs 95
9.3 Direct labor costs 99
9.4 Capital costs 100
9.5 Indirect labor costs 115
9.6 Toolset repair costs 116
9.7 Monitor wafer costs 117
Contents

9.8 Facilities costs
9.9 Consumable items costs
9.10 Unyielded wafer cost trends
9.11 Wafer yields
9.12 Yielded Wafer costs
9.13 Additional resources
9.14 References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8 Facilities costs</td>
<td>117</td>
</tr>
<tr>
<td>9.9 Consumable items costs</td>
<td>125</td>
</tr>
<tr>
<td>9.10 Unyielded wafer cost trends</td>
<td>133</td>
</tr>
<tr>
<td>9.11 Wafer yields</td>
<td>135</td>
</tr>
<tr>
<td>9.12 Yielded Wafer costs</td>
<td>136</td>
</tr>
<tr>
<td>9.13 Additional resources</td>
<td>136</td>
</tr>
<tr>
<td>9.14 References</td>
<td>137</td>
</tr>
</tbody>
</table>

10 Test and Packaging Costs
10.1 Test costs
10.2 Packaging
10.3 Additional resources
10.4 References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Test costs</td>
<td>139</td>
</tr>
<tr>
<td>10.2 Packaging</td>
<td>144</td>
</tr>
<tr>
<td>10.3 Additional resources</td>
<td>149</td>
</tr>
<tr>
<td>10.4 References</td>
<td>149</td>
</tr>
</tbody>
</table>

11 Die Yield and Product Costs
11.1 Gross die per wafer
11.2 Defect density concept
11.3 Yield models
11.4 Defect density trends
11.5 Recommended defect densities
11.6 Yield Trends
11.7 Product cost examples
11.8 Additional resources
11.9 References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Gross die per wafer</td>
<td>150</td>
</tr>
<tr>
<td>11.2 Defect density concept</td>
<td>151</td>
</tr>
<tr>
<td>11.3 Yield models</td>
<td>151</td>
</tr>
<tr>
<td>11.4 Defect density trends</td>
<td>152</td>
</tr>
<tr>
<td>11.5 Recommended defect densities</td>
<td>153</td>
</tr>
<tr>
<td>11.6 Yield Trends</td>
<td>155</td>
</tr>
<tr>
<td>11.7 Product cost examples</td>
<td>155</td>
</tr>
<tr>
<td>11.8 Additional resources</td>
<td>155</td>
</tr>
<tr>
<td>11.9 References</td>
<td>155</td>
</tr>
</tbody>
</table>

12 Cycle Time and Utilization
12.1 Definitions
12.2 OEE is wrong
12.3 Economic value of cycle time
12.4 Managing cycle time
12.5 Cost of ownership
12.6 Equipment uptime
12.7 How the factory effects cost
12.8 Throughput benchmarks
12.9 References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Definitions</td>
<td>157</td>
</tr>
<tr>
<td>12.2 OEE is wrong</td>
<td>157</td>
</tr>
<tr>
<td>12.3 Economic value of cycle time</td>
<td>163</td>
</tr>
<tr>
<td>12.4 Managing cycle time</td>
<td>164</td>
</tr>
<tr>
<td>12.5 Cost of ownership</td>
<td>169</td>
</tr>
<tr>
<td>12.6 Equipment uptime</td>
<td>169</td>
</tr>
<tr>
<td>12.7 How the factory effects cost</td>
<td>173</td>
</tr>
<tr>
<td>12.8 Throughput benchmarks</td>
<td>174</td>
</tr>
<tr>
<td>12.9 References</td>
<td>175</td>
</tr>
</tbody>
</table>

13 Technology Trends 1
13.1 Transistors per IC
13.2 Die size
13.3 Photolithography trends
13.4 MOSFET scaling
13.5 Strain engineering
13.6 Gate oxide scaling and high-k gate oxides
13.7 SOI
13.8 Interconnect
13.9 DRAM technology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Transistors per IC</td>
<td>176</td>
</tr>
<tr>
<td>13.2 Die size</td>
<td>177</td>
</tr>
<tr>
<td>13.3 Photolithography trends</td>
<td>177</td>
</tr>
<tr>
<td>13.4 MOSFET scaling</td>
<td>187</td>
</tr>
<tr>
<td>13.5 Strain engineering</td>
<td>188</td>
</tr>
<tr>
<td>13.6 Gate oxide scaling and high-k gate oxides</td>
<td>190</td>
</tr>
<tr>
<td>13.7 SOI</td>
<td>192</td>
</tr>
<tr>
<td>13.8 Interconnect</td>
<td>194</td>
</tr>
<tr>
<td>13.9 DRAM technology</td>
<td>196</td>
</tr>
</tbody>
</table>
13.10 Flash Technology 199
13.11 Conclusion 203
13.12 References 203

Glossary 206
1.0. Welcome and License

Welcome to the IC Knowledge - Integrated Circuit Economics Report. We would like to thank you for choosing IC Knowledge. We believe the IC Economics report you have purchased is the most comprehensive, accurate and up-to-date IC economics information available. This report is designed to be self explanatory, but if you have a question we will answer a reasonable number of e-mails for 12 months after the purchase date. Our e-mail address is info@icknowledge.com. We hope you find our report interesting and that it meets your needs.

1.1. License

IMPORTANT-READ CAREFULLY: This License agreement (“LICENSE”) is a legal agreement between you ("INDIVIDUAL") and IC Knowledge LLC. By installing, copying or otherwise using the IC Economics report ("REPORT"), you agree to be bound by the terms of this LICENSE.

The REPORT is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The REPORT is licensed, not sold.

1.1.1. DEFINITIONS

• LICENSE - a legal agreement covering the allowable use of the REPORT.
• REPORT - the IC Knowledge LLC - 2011 IC Economics report comprised of an Adobe Acrobat file containing text, figures and tables.
• INDIVIDUAL - the person that purchases the REPORT and is licensed to use the REPORT.
• COMPANY - a company employing the Individual at the time the Individual purchases the REPORT.

1.1.2. LICENSE: This LICENSE grants the INDIVIDUAL the following rights.

• The INDIVIDUAL may save a single copy of the REPORT on a private local hard drive or private directory on a network hard drive.
• The INDIVIDUAL may make a single copy of the REPORT as may reasonably be required for backup.
• The INDIVIDUAL may make use of the information contained in the REPORT in the preparation of reports and analysis used to further the interests of the COMPANY or INDIVIDUAL.
• The INDIVIDUAL may make limited use of the information contained in the REPORT for the preparation and delivery of presentations provided such information is clearly identified as being copyright IC Knowledge LLC all rights reserved.

1.1.3. LIMITATIONS: The following rights are explicitly excluded.

• The INDIVIDUAL may not at any time save the REPORT on any medium where multiple people have access to the location where the file is stored.
• The INDIVIDUAL may not resell, rent or redistribute the REPORT.
• The INDIVIDUAL may not use the REPORT to provide information for multiple third parties.

1.1.4. COPYRIGHT

All title and copyrights in and to the REPORT (including but not limited to any images, photographs, animations, video, audio, music, text and “applets,” incorporated into the REPORT), any copies of the REPORT, are owned by IC Knowledge LLC. IC Knowledge LLC reserves all rights not specifically granted under this License.

1.1.5. PROPRIETARY DATA

The INDIVIDUAL agrees not to make any attempts to “hack” or guess the password used by IC Knowledge LLC to protect the REPORT from page and or figure extraction and editing.
1.1.6. UPDATES
Included in the price of the REPORT is any and all updates made to the 2011 REPORT. Such updates may or may not be generated at the sole discretion of IC Knowledge LLC.

1.1.7. ASSIGNMENT
• The INDIVIDUAL may be changed at any time to any employee of the COMPANY by notifying IC Knowledge LLC by e-mail of the change. E-mail notification should be sent to info@icknowledge.com.
• In the event that the COMPANY is acquired by another Company, the acquiring company will become the COMPANY under this agreement once IC Knowledge LLC has been notified by e-mail of the change. E-mail notification should be sent to info@icknowledge.com.

1.1.8. NON-WAIVER
• No failure of IC Knowledge LLC to strictly enforce any term, right or condition of this LICENSE shall be construed as a waiver of such term, right or condition for the purpose of any subsequent occasion or event.

1.1.9. CHOICE OF LAW; JURISDICTION
• This LICENSE shall be interpreted and governed by the laws of the state of Massachusetts.

1.1.10. VALIDITY
• If any term or provision of this LICENSE shall be determined to be invalid or unenforceable under applicable law, such provision shall be deemed severed from this LICENSE, and the remaining provisions of this Agreement shall remain in full force and effect.

1.1.11. TERMINATION
Without prejudice to any other rights, IC Knowledge LLC may terminate this LICENSE if the INDIVIDUAL fails to comply with the terms and conditions of this LICENSE. In such event, the INDIVIDUAL must destroy all copies of the REPORT.

1.2. About IC Knowledge LLC
IC Knowledge LLC was founded in the year 2000 by a group of wafer fabrication technologists and management specialists. IC Knowledge LLC is dedicated to offering the finest training and reference materials available to the semiconductor industry.

1.3. IC Knowledge LLC products
• Integrated Circuit Cost and Price Model - a Microsoft Excel based cost model that uses dropdown menu selections to generate product costs and prices for most low power silicon based integrated circuit products.
• Discrete and Power Products Cost and Price Model - a Microsoft Excel based cost model that uses dropdown menu selections to generate product costs and prices for most discrete and power silicon based integrated circuit products.
• MEMS Cost Model - a Microsoft Excel based cost model that uses dropdown menu selections to generate product costs for most MEMS products.
• Strategic Cost Model - a Microsoft Excel based cost model that implements the 2010 ITRS from 2009 to 2024.
• Semiconductor Silicon Demand Forecast - a Microsoft Excel based forecast model of silicon demand.
• 300mm and 450mm Equipment Forecast - a Microsoft Excel based forecast of 300mm and 450mm equipment based on the 2010 ITRS.
Chapter 1 - Welcome and license

• Integrated Circuit Economics - this report.
• Integrated Circuit Packaging - a report covering the packaging market, packaging technology, test, packaging technology trends, packaging foundry selection and pricing.
• 300mm and 450mm Watch - a Microsoft Excel based database of 300mm and 450mm fabs and companion analysis.

1.4. Disclaimer
We believe the information presented in this publication to be accurate and representative of general integrated circuit industry practices. Much of the information in this report is compiled from technical journals and other secondary sources. IC Knowledge LLC does not warranty the accuracy of the information presented in this report in any way. It is up to the user to determine whether the information presented is applicable to the situation the user is interested in.

1.5. Report outline
This report is broken up into thirteen chapters.

1. Welcome.
2. IC market status and trends - a general look at the IC market and market trends.
5. 300mm and 450mm - a discussion of the impact of 300mm and 450mm wafer sizes on the industry.
6. Foundries - the impact and future of foundries.
7. Design - the impact of design complexity and cost.
8. Integrated circuit manufacturing overview - an overview of IC manufacturing and facility requirements.
9. Wafer fabrication costs - a detailed look at the costs of wafer fabrication.
10. Test and packaging costs - a detailed review of the costs to test and package integrated circuits.
11. Die yield and product costs - how to calculate die yield and die and product costs from the information presented in the previous two sections.
12. Cycle time and utilization - wafer fabrication facility utilization is one of the most important factors in determining costs, this section discusses factory management trade-offs.
13. Technology trends - trends in IC technology and a brief history of the IC.

1.6. What this report is not
This report is meant to give the reader an understanding of integrated circuit manufacturing costs and broad economic issues.

• We discuss general market trends, but this is not a market research firm and we are not in the business of forecasting the market. For market research and forecasts we recommend IC Insights at www.icinsights.com.
• This report is not intended to serve as a cookbook for calculating IC costs. To calculate costs for specific ICs, we recommend our IC Cost and Price Model.

1.7. A word about technology focus
For many years the overall driver of IC technology was DRAMs, then microprocessors displaced DRAMs in many areas and more recently NAND Flash has become a driver, although DRAMs still lead in areas such as high-k capacitor structures. For the purposes of technology analysis in this report, we discuss microprocessors, NAND Flash and DRAMs.
1.8. Acknowledgements

We would like to thank IC Insights for permission to reprint several tables from the 2011 edition of the McClean report. As we mentioned in the previous section we are not a market research firm - they are, and a good one. We strongly recommend the McClean report to anyone interested in understanding the semiconductor market in greater detail than presented here. We would also like to thank Linx Consulting, another company we strongly recommend for providing data for the section on Semiconductor Materials.